MAHON, R. and OLUYEMI, G. 2024. From sands to solutions: the role of sand management in carbon capture and storage projects to enable the energy transition. Presented at the 10th Sand Management Network Euroforum 2024, 27-28 November 2024, Aberdeen, UK.

From sands to solutions: the role of sand management in carbon capture and storage projects to enable the energy transition.

MAHON, R. and OLUYEMI, G.

2024

This document was downloaded from https://openair.rgu.ac.uk

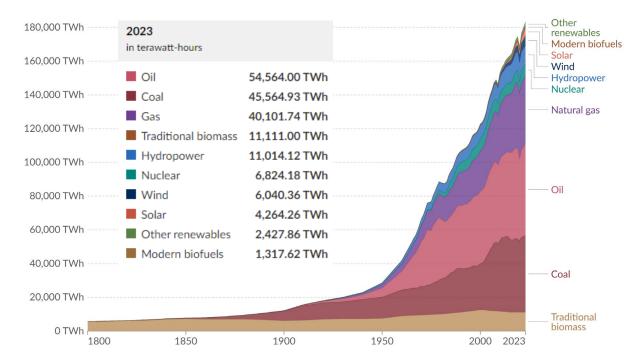
10th Sand Management Network Euroforum 2024

From Sands to Solutions: The Role of Sand Management in Carbon Capture and Storage Projects to Enable the Energy Transition

Dr Ruissein Mahon & Dr Gbenga Oluyemi

Innovations in Solids Management Across The Energy Sector

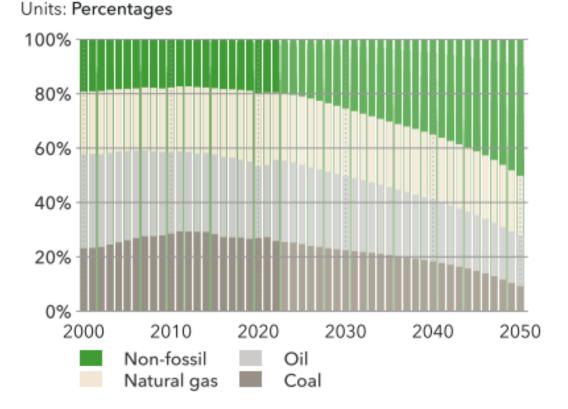
Outline


- Energy landscape
- GHG emissions
- Energy transition
- CCS
- Case studies
- Opportunities
- Key takeaways
- Future direction

Global Energy Landscape

• Oil is the largest contributor to the energy supply since surpassing coal in 1964.

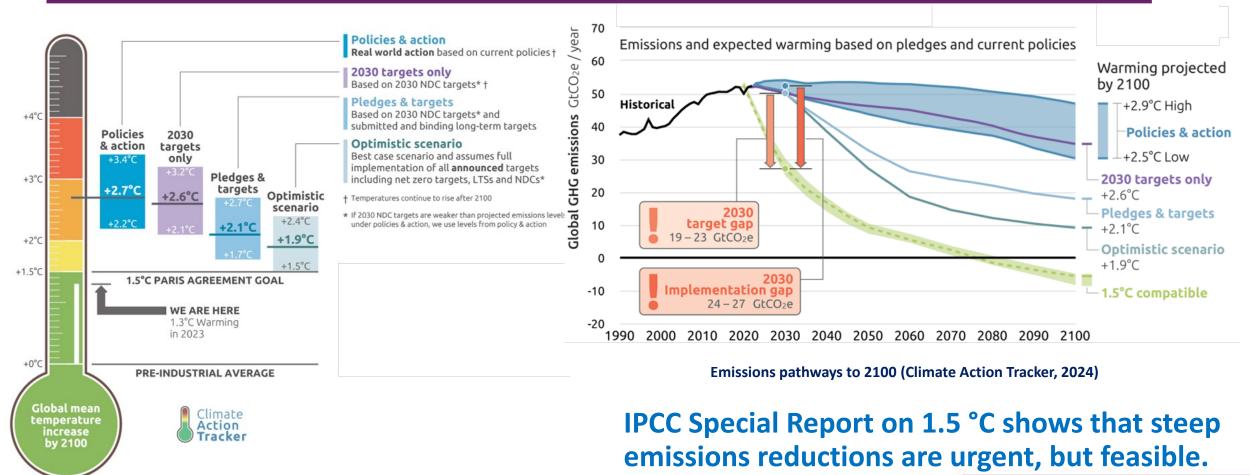
RUBERT GORDON


- Over the last decade, the share of oil in the primary energy supply has been ~30%.
- Renewable power generation is gaining momentum.
- China recorded the highest level of renewable installations in 2023 as the entire world in 2022.
- Overall, wind and solar generation rose rapidly (+10% and +25%, respectively) to reach 15% of the G20 power mix.

Global primary energy consumption by source (Our World in Data, 2024)

28th November 2024

Global Energy Landscape


Fossil versus non-fossil in primary energy supply (DNV, 2024)

- Gradual phase-down of fossil fuels.
- Natural gas maintains a high share of the primary energy supply mix throughout the forecast period.
- Although renewables are already competitive with fossil-fired electricity, it will be many years before low- and zerocarbon energy sources dislodge fossil fuels from the broader energy system.
- Share of fossil fuels will shrink by more than one percentage point per year to 50% by mid-century.

28th November 2024

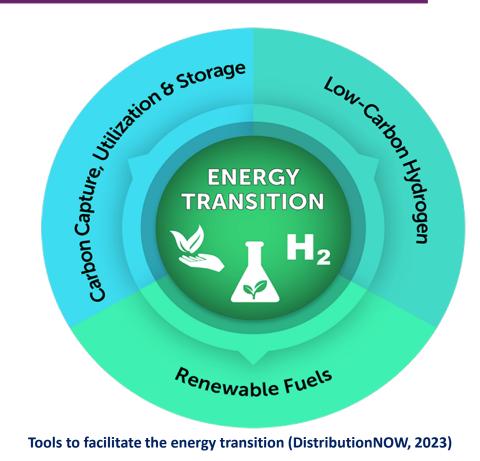
Global GHG Emissions

ROBERT GORDON UNIVERSITY ABERDEEN

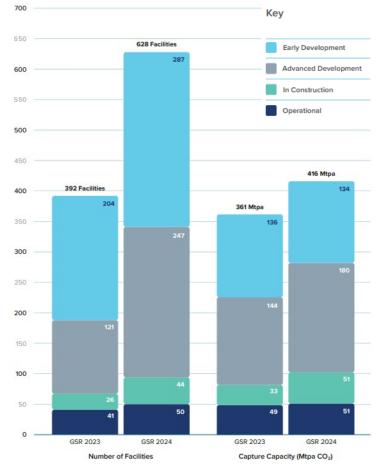
Warming projects: Global temperature increase by 2100 (Climate Action Tracker, 2024)

Innovations in Solids Management Across The Energy Sector

Energy Transition

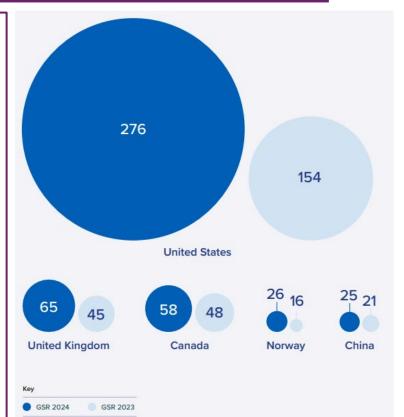

- Energy system changes are required to achieve GHG emission targets
- Climate technologies and decarbonisation tools required to accelerate the move towards net zero energy system

Global markets


- Geothermal¹: USD 70.14 billion, expected to grow to USD 117.02 billion by 2032
- Hydrogen¹: USD 176.74 billion, expected to expand to USD 278.26 billion by 2032
- Carbon Capture and Storage¹: USD 3.54 billion, expected to grow to USD 14.51 billion by 2032

¹ According to Fortune Business Insights 2024

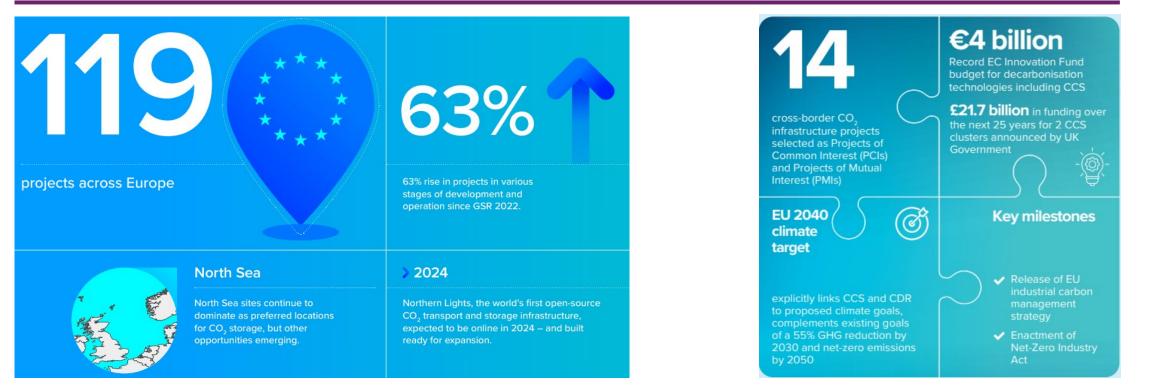
Innovations in Solids Management Across The Energy Sector


Carbon Capture and Storage

ROBERT GORDON

Commercial CCS facilities by number and total capture capacity (Global CCS Institute, 2024)

- Important role in decarbonising hard-to-abate (electrify) industries and the power sector.
- Facilitates the production of low-emissions hydrogen and ammonia.
- Supports a Paris Agreement aligned transition — or any transition that results in warming close to 2°C.
- Characterised by complex rock-fluid interactions.

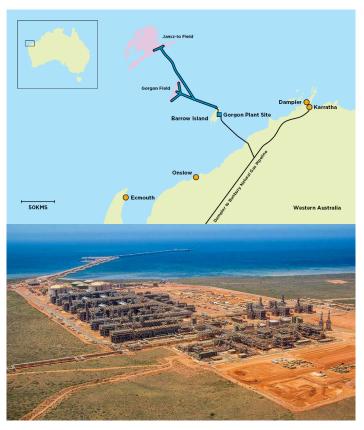


Top 5 countries with CCS projects in 2024 v 2023 (Global CCS Institute, 2024)

28th November 2024

Europe & UK CCS Projects

ROBERT GORDON UNIVERSITY ABERDEEN

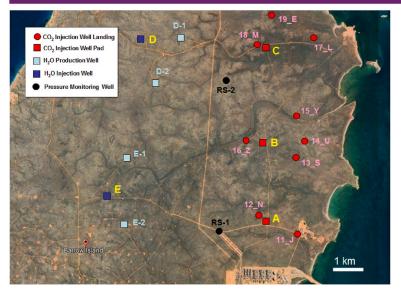

Regional overview of Europe and the UK 2022/23 (Global CCS Institute, 2023)

Regional overview of Europe and the UK 2023/24 (Global CCS Institute, 2024)

ETS price of ≤ 100 per tonne of CO₂ in Feb 2023, contributed to an improved CCS business case. Across Europe there are 5 projects in operation, with 10 in construction.

Innovations in Solids Management Across The Energy Sector

Case Study: Gorgon, Australia



Location of Gorgon CCS project and facility (Chevron Australia, 2024)

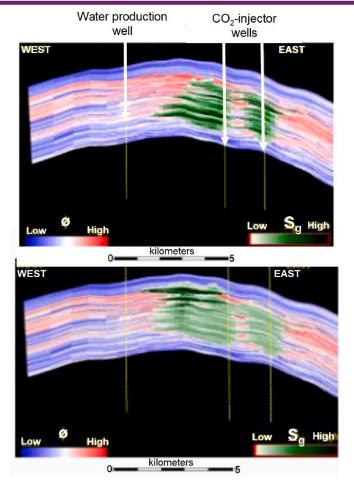
- World's largest CCS project, aiming to sequester 2 Tcf CO₂ (~0.1 Gt) over the 40-year project life.
- Gorgon CO₂ injection is part of the wider Gorgon LNG development project offshore Western Australia.
- Nominal maximum capacity of 4 Mtpa accounting for 40% of the capacity of all CCS projects.
- Received \$60 million from the Australian government as part of the Low Emissions Technology Demonstration Fund.
- Revised target for the first five-year period was about 10.1 MT, failing to meet its target by about 50%.
- Capital expenditure escalated to ~USD \$3.1 billion.

Innovations in Solids Management Across The Energy Sector

Case Study: Gorgon, Australia

17 well arrangement employed for reservoir management system of the Gorgon CCS project (Weijermars, 2024)

Design principle for the Gorgon CCS project (Weijermars, 2024)


• Operational problems:

- 1. Sand clogging of all wells.
- 2. Pressure increases that neared the failure strength of the Basal Barrow Group Shale cap-rock sealing the injection zone.
- 3. Water-block in the CO_2 -injection wells due to premature water condensation from the raw CO_2 -gas supply.
- Wells had poor sand control, which damaged submersible pumps in the water production wells and further delayed restarting the CO₂-sequestration in 2021.
- After 3 to 4 years of injection, injection rates reduced resulting in the project delivering one-third of the planned injection capacity.

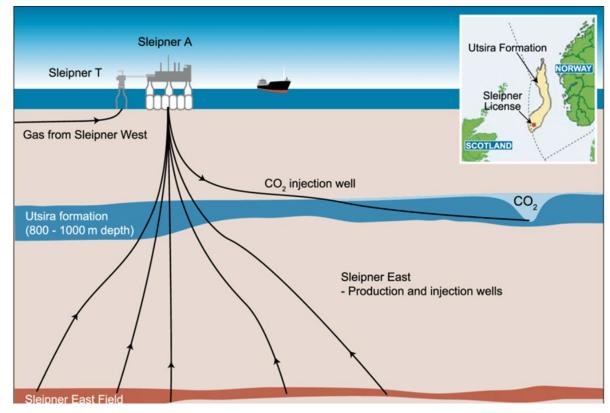
"Gorgon a poster-child for CCS shortcomings"

28th November 2024

Case Study: Gorgon, Australia

- Announced plans for the recompletion of all of the wells, to stabilise the sand control issues.
- Sidetrack all 9 CO₂-injection wells and re-equip them with gravel packs and active control sanding systems.
- 4 water-production wells, which are used to take water out of the Dupuy Formation (where Gorgon CO₂ is stored), will be sidetracked.
- Water re-injection wells will be increased from 2 to 4 and will be sidetracked to inject water in a reservoir located above the Dupuy formation.

Re-engineered well completions to solve the sand control and pressure management issues

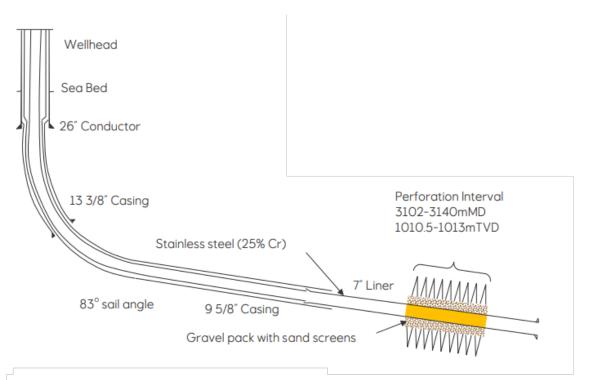

Cheveron's simulation of CO₂-plume migration paths (Weijermars, 2024)

Innovations in Solids Management Across The Energy Sector

Case Study: Sleipner, Norway

- First large-scale CCS project to become operational in Europe and longest-running CCS project in the world.
- **Regulatory frameworks:** EU Directive, London Protocol (amended), and OSPAR Convention.
- Stringent emission regulations: Combination of the CO₂ tax and levied climate quota.
- Operational issues: Initial injection problems due to sand influx, and faster CO₂ migration, into a previously unidentified shallow layer in unexpectedly large quantities.

28th November 2024


ROBERT GORDON

Case Study: Sleipner, Norway

- CO₂ injection started in September 1996.
- Well perforation should have corresponded to a water injectivity of 100 m³/day/bar.
- Almost immediate signs of low injectivity due to sand influx.
- Sand screens of 300 microns were installed in December of the same year resulting in an improved injection rate.
- During this period, it was necessary to vent CO₂ into the air.

Solution: (1) Re-perforation of the injection interval, (2) installation of sand screen and gravel packs, and (3) increased filtration capacity.

Innovations in Solids Management Across The Energy Sector

Sleipner CO₂ injection well 15/9-A16 (Hansen et al., 2005)

10th Sand Management Network Euroforum 2024

ROBERT GORDON UNIVERSITY ABERDEEN

Opportunities: CCUS Value Chain

Gas fields:

Produced gas may contain significant quantities of CO₂ and / or sand leading to flow assurance issues

Pipeline:

Solid impurities transported with SC-CO₂ transport systems can cause flow assurance issues

Formation Dry-out and Salt Precipitation

CO₂ injection:

Mechanism of CO_2 residual trapping by fines migration and mineral reactions can cause pore plugging

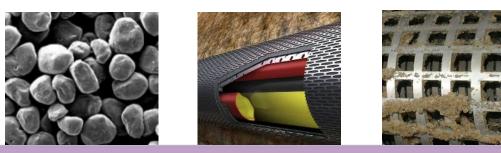
Saline aquifers:

Challenges related to water production and re-injection wells in terms of sand production / influx

28th November 2024

Sand Management Technologies

Downhole sand management techniques:


- Baker Hughes: GeoFORM conformable sand management system
- **SLB:** SandSet sand consolidation technology
- Weatherford: ZetaFlow[®] Sand-Conglomeration Services
- Halliburton: PetroGuard[®] Mesh-DS Screen
- 3M: Ceramic Sand Screen

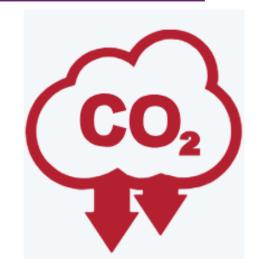
ROBERT GORDON

• Tendeka: FloShroud Range

Surface filtration technologies :

- Mechanical (strainer) metal filters: larger sized impurities and waste materials
- Cloth filters: combinable with mechanical filters to catch micron-sized pollutants
- Gravel filters or sand filters: classified and washed bed of gravels in a steel tank catches all the impurities
- Hydrochemical filtration systems

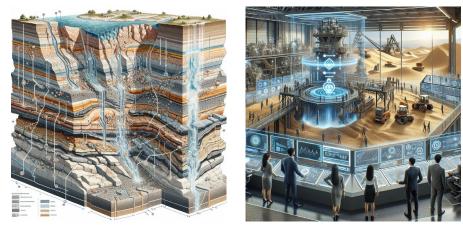
Innovations in Solids Management Across The Energy Sector


Key Takeaways

- Concerted effort is required to achieve the **Energy Transition**.
- Ability to achieve and maintain an adequate level of CO₂ injectivity is critical to guarantee the successful implementation of CCS projects.
- Leverage technical 'know-how' and expertise of the sand management community.

Offer: "UK has a global leading geological advantage – having one of the greatest CO_2 storage potentials accounting for approximately 25% of Europe's CO_2 storage potential and which can safely store 78 billion tonnes of CO_2 " – UK Government

28th November 2024



Future Direction

Research and development areas:

- 1. Rock failure prediction for CO₂ sequestration projects.
- 2. Underground hydrogen storage (UHS) and rock-fluid interaction.
- 3. Digital twin and AI technology integration in sand management and control systems.

Innovations in Solids Management Across The Energy Sector

10th Sand Management Network Euroforum 2024

Thank you for listening!

Innovations in Solids Management Across The Energy Sector